Estimation of parameters and quantiles of the Weibull distribution

Author:

Jokiel-Rokita AlicjaORCID,Pia̧tek Sylwester

Abstract

AbstractWe propose three new estimators of the Weibull distribution parameters which lead to three new plug-in estimators of quantiles. One of them is a modification of the maximum likelihood estimator and two of them are based on nonparametric estimators of the Gini coefficient. We also make some review of estimators of the Weibull distribution parameters and quantiles. We compare the small sample performance (in terms of bias and mean squared error) of the known and new estimators and extreme quantiles. Based on simulations, we obtain, among others, that the proposed modification of the maximum likelihood estimator of the shape parameter has a smaller bias and mean squared error than the maximum likelihood estimator, and is better or as good as known estimators when the sample size is not very small. Moreover, one of the proposed estimator, based on the nonparametric estimator of the Gini coefficient, leads to good extreme quantiles estimates (better than the maximum likelihood estimator) in the case of small sample sizes.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3