Enhancing scalability and accuracy of quantum poisson solver

Author:

Saha Kamal K.ORCID,Robson Walter,Howington Connor,Suh In-SaengORCID,Wang Zhimin,Nabrzyski Jaroslaw

Abstract

AbstractThe Poisson equation has many applications across the broad areas of science and engineering. Most quantum algorithms for the Poisson solver presented so far either suffer from lack of accuracy and/or are limited to very small sizes of the problem and thus have no practical usage. In this regard, our previous work (Robson in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022) showed a proof-of-concept demonstration in advancing quantum Poisson solver algorithm and validated preliminary results for a simple case of $$3\times 3$$ 3 × 3 problem. In this work, we delve into comprehensive research details, presenting the results on up to $$15\times 15$$ 15 × 15 problems that include step-by-step improvements in Poisson equation solutions, scaling performance, and experimental exploration. In particular, we demonstrate the implementation of eigenvalue amplification by a factor of up to $$2^8$$ 2 8 , achieving a significant improvement in the accuracy of our quantum Poisson solver and comparing that to the exact solution. Additionally, we present success probability results, highlighting the reliability of our quantum Poisson solver. Moreover, we explore the scaling performance of our algorithm against the circuit depth and width, demonstrating how our approach scales with larger problem sizes and thus further solidifies the practicality of easy adaptation of this algorithm in real-world applications. We also discuss a multilevel strategy for how this algorithm might be further improved to explore much larger problems with greater performance. Finally, through our experiments on the IBM quantum hardware, we conclude that though overall results on the existing NISQ hardware are dominated by the error in the CNOT gates, this work opens a path to realizing a multidimensional Poisson solver on near-term quantum hardware.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3