1. Alkenani, A.N., Ashraf, M., Mohammad, G.: Quantum codes from constacyclic codes over the ring $$F_q [u_1,u_2 ]/\langle u_1^2-u_1,u_2^2=u_2,u_1 u_2-u_1 u_2 \rangle$$. Mathematics. 8, 1–11 (2020)
2. Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic cods over
3. Calderbank, A.R., et al.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory. 44, 1369–1387 (1998)
4. Dinh, H.Q., Bag, T., et al.: Quantum codes obtained from constacyclic codes over a family of finite rings $$F_p [u_1,u_2,\ldots,u_s ]$$. IEEE Access. 8, 194082–194091 (2020)
5. Gowdhaman, K., Mohan, C., et al.: Construction of quantum codes from λ-constacyclic codes over the ring $$ F_{p} \left[ {u,~v} \right]/\left\langle {{\text{v}}^{3} - {\text{v}},{\text{u}}^{{3{\text{~}}}} {-}{\text{u~}},{\text{uv}} - {\text{vu}}} \right\rangle $$. J. Appl. Math. Comput. 65, 1–12 (2020)