Abstract
AbstractWe use the mapping between two computation frameworks, Adiabatic Grover Search (AGS) and Adiabatic Quantum Computing (AQC), to translate the Grover search algorithm into the AQC regime. We then apply Trotterization on the schedule-dependent Hamiltonian of AGS to obtain the values of variational parameters in the Quantum Approximate Optimization Algorithm (QAOA) framework. The goal is to carry the optimal behavior of Grover search algorithm into the QAOA framework without the iterative machine learning processes.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Modeling and Simulation,Signal Processing,Theoretical Computer Science,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Reference38 articles.
1. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., Obrien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)
2. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)
3. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)
4. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)
5. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献