The Split and Approximate Split Property in 2D Systems: Stability and Absence of Superselection Sectors

Author:

Naaijkens PieterORCID,Ogata Yoshiko

Abstract

AbstractThe split property of a pure state for a certain cut of a quantum spin system can be understood as the entanglement between the two subsystems being weak. From this point of view, we may say that if it is not possible to transform a state $$\omega $$ ω via sufficiently local automorphisms (in a sense that we will make precise) into a state satisfying the split property, then the state $$\omega $$ ω has a long-range entanglement. It is well known that in 1D, gapped ground states have the split property with respect to cutting the system into left and right half-chains. In 2D, however, the split property fails to hold for interesting models such as Kitaev’s toric code. Here we show that this failure is the reason that anyons can exist in that model. There is a folklore saying that the existence of anyons, like in the toric code model, implies long-range entanglement of the state. In this paper, we prove this folklore in an infinite dimensional setting. More precisely, we show that long-range entanglement, in a way that we will define precisely, is a necessary condition to have non-trivial superselection sectors. Anyons in particular give rise to such non-trivial sectors. States with the split property for cones, on the other hand, do not admit non-trivial sectors. A key technical ingredient of our proof is that under suitable assumptions on locality, the automorphisms generated by local interactions can be “approximately factorized.” That is, they can be written as the tensor product of automorphisms localized in a cone and its complement respectively, followed by an automorphism acting near the “boundary” of $$\Lambda $$ Λ , and conjugation with a unitary. This result may be of independent interest. This technique also allows us to prove that the approximate split property, a weaker version of the split property that is satisfied in e.g. the toric code, is stable under applying such automorphisms.

Funder

H2020 European Research Council

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3