Spectral Analysis of Discrete Metastable Diffusions

Author:

Di Gesù GiacomoORCID

Abstract

AbstractWe consider a discrete Schrödinger operator $$ H_\varepsilon = -\varepsilon ^2\Delta _\varepsilon + V_\varepsilon $$ H ε = - ε 2 Δ ε + V ε on $$\ell ^2(\varepsilon \mathbb {Z}^d)$$ 2 ( ε Z d ) , where $$\varepsilon >0$$ ε > 0 is a small parameter and the potential $$V_\varepsilon $$ V ε is defined in terms of a multiwell energy landscape f on $$\mathbb {R}^d$$ R d . This operator can be seen as a discrete analog of the semiclassical Witten Laplacian of $$\mathbb {R}^d$$ R d . It is unitarily equivalent to the generator of a diffusion on $$\varepsilon \mathbb {Z}^d$$ ε Z d , satisfying the detailed balance condition with respect to the Boltzmann weight $$\exp {(-f/\varepsilon )}$$ exp ( - f / ε ) . These type of diffusions exhibit metastable behavior and arise in the context of disordered mean field models in Statistical Mechanics. We analyze the bottom of the spectrum of $$H_\varepsilon $$ H ε in the semiclassical regime $$\varepsilon \ll 1$$ ε 1 and show that there is a one-to-one correspondence between exponentially small eigenvalues and local minima of f. Then we analyze in more detail the bistable case and compute the precise asymptotic splitting between the two exponentially small eigenvalues. Through this purely spectral-theoretical analysis of the discrete Witten Laplacian we recover in a self-contained way the Eyring–Kramers formula for the metastable tunneling time of the underlying stochastic process.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference46 articles.

1. Becker, S., Menegaki, A.: Spectral gap in mean-field $${\cal{O} }(n)$$-model. Commun. Math. Phys. 380, 1361–1400 (2020)

2. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140(6), 1–50 (2010)

3. Berglund, N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Relat. Fields 19, 459–490 (2013)

4. Bertini, L., Gabrielli, D., Landim, C.: Metastable $$\Gamma $$-expansion of finite state Markov chains level two large deviations rate functions. arXiv:2207.02588 (2022)

5. Bianchi, A., Bovier, A., Ioffe, D.: Sharp asymptotics for metastability in the random field Curie–Weiss model. Electr. J. Probab. 14, 1541–1603 (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3