Non-uniqueness of Admissible Solutions for the 2D Euler Equation with $$L^p$$ Vortex Data

Author:

Mengual FranciscoORCID

Abstract

AbstractFor any $$2<p<\infty $$ 2 < p < we prove that there exists an initial velocity field $$v^\circ \in L^2$$ v L 2 with vorticity $$\omega ^\circ \in L^1\cap L^p$$ ω L 1 L p for which there are infinitely many bounded admissible solutions $$v\in C_tL^2$$ v C t L 2 to the 2D Euler equation. This shows sharpness of the weak–strong uniqueness principle, as well as sharpness of Yudovich’s proof of uniqueness in the class of bounded admissible solutions. The initial data are truncated power-law vortices. The construction is based on finding a suitable self-similar subsolution and then applying the convex integration method. In addition, we extend it for $$1<p<\infty $$ 1 < p < and show that the energy dissipation rate of the subsolution vanishes at $$t=0$$ t = 0 if and only if $$p\ge \nicefrac {3}{2}$$ p 3 2 , which is the Onsager critical exponent in terms of $$L^p$$ L p control on vorticity in 2D.

Funder

Institute for Advanced Study

Universidad de Sevilla

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Ministerio de Ciencia e Innovación

HORIZON EUROPE European Research Council

Max Planck Institute for Mathematics in the Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3