Perturbative Symmetry Approach for Differential–Difference Equations

Author:

Mikhailov Alexander V.ORCID,Novikov Vladimir S.,Wang Jing Ping

Abstract

AbstractWe propose a new method to tackle the integrability problem for evolutionary differential–difference equations of arbitrary order. It enables us to produce necessary integrability conditions, to determine whether a given equation is integrable or not, and to advance in classification of integrable equations. We define and develop symbolic representation for the difference polynomial ring, difference operators and formal series. In order to formulate necessary integrability conditions, we introduce a novel quasi-local extension of the difference ring. We apply the developed formalism to solve the classification problem of integrable equations for anti-symmetric quasi-linear equations of order $$(-3,3)$$ ( - 3 , 3 ) and produce a list of 17 equations satisfying the necessary integrability conditions. For every equation from the list we present an infinite family of integrable higher order relatives. Some of the equations obtained are new.

Funder

Engineering and Physical Sciences Research Council

Ministry of Sciences and Higher Education of Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference37 articles.

1. Sokolov, V.V., Shabat, A.B.: Classification of integrable evolution equations. In: Mathematical Physics Reviews, volume 4 of Soviet Sci. Rev. Sect. C: Math. Phys. Rev., pp. 221–280. Harwood Academic Publ., Chur (1984)

2. Mikhailov, A.V., Shabat, A.B., Yamilov, R.I.: A symmetric approach to the classification of nonlinear equations. Complete lists of integrable systems. Uspekhi Mat. Nauk 42(4(256)), 3–53 (1987)

3. Mikhailov, A.V., Shabat, A.B., Sokolov, V.V.: The symmetry approach to classification of integrable equations. In: What is Integrability? Springer Series Nonlinear Dynamics. Springer, Berlin, pp. 115–184 (1991)

4. Gel’fand, I.M., Dikii, L.A.: Asymptotic properties of the resolvent of Sturm–Liouville equations, and the algebra of Korteweg–de Vries equations. Uspehi Mat. Nauk, 30(5(185)), 67–100 (1975). English translation: Russian Math. Surveys, 30 (1975), no. 5, 77–113

5. Beukers, F., Sanders, J.A., Wang, J.P.: One symmetry does not imply integrability. J. Differ. Equ. 146(1), 251–260 (1998)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3