Manifolds with Many Rarita–Schwinger Fields

Author:

Bär Christian,Mazzeo RafeORCID

Abstract

AbstractThe Rarita–Schwinger operator is the twisted Dirac operator restricted to $$\nicefrac 32$$ 3 2 -spinors. Rarita–Schwinger fields are solutions of this operator which are in addition divergence-free. This is an overdetermined problem and solutions are rare; it is even more unexpected for there to be large dimensional spaces of solutions. In this paper we prove the existence of a sequence of compact manifolds in any given dimension greater than or equal to 4 for which the dimension of the space of Rarita–Schwinger fields tends to infinity. These manifolds are either simply connected Kähler–Einstein spin with negative Einstein constant, or products of such spaces with flat tori. Moreover, we construct Calabi–Yau manifolds of even complex dimension with more linearly independent Rarita–Schwinger fields than flat tori of the same dimension.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference11 articles.

1. Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Global Anal. Geom. 16(6), 573–596 (1998)

2. Branson, T., Hijazi, O.: Bochner-Weitzenböck formulas associated with the Rarita–Schwinger operator. Int. J. Math. 13(2), 137–182 (2002)

3. Bureš, J.: The higher spin Dirac operators. In: Proceedings of the 7th international DGA conference, Brno, Differential Geometry and its Applications, Masaryk Univ., Brno, pp. 319–334 (1999)

4. Hirzebruch, F.: Topological methods in algebraic geometry. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1978 edition

5. Homma, Y., Semmelmann, U.: The kernel of the Rarita–Schwinger operator on Riemannian spin manifolds. Commun. Math. Phys. 370(3), 853–871 (2019)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rarita-Schwinger fields on nearly Kähler manifolds;Differential Geometry and its Applications;2023-12

2. Rarita-Schwinger fields on nearly parallel G2-manifolds;Journal of Geometry and Physics;2023-12

3. Pin(2)-Equivariance Property of the Rarita–Schwinger–Seiberg–Witten Equations;The Journal of Geometric Analysis;2023-08-08

4. The spinor and tensor fields with higher spin on spaces of constant curvature;Annals of Global Analysis and Geometry;2021-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3