Abstract
AbstractThis paper studies the universal first-order Massey product of a prefactorization algebra, which encodes higher algebraic operations on the cohomology. Explicit computations of these structures are carried out in the locally constant case, with applications to factorization envelopes on $$\mathbb {R}^m$$
R
m
and a compactification of linear Chern–Simons theory on $$\mathbb {R}^2\times \mathbb {S}^1$$
R
2
×
S
1
.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Ayala, D., Francis, J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015). arXiv:1206.5522 [math.AT]
2. Beem, C., Ben-Zvi, D., Bullimore, M., Dimofte, T., Neitzke, A.: Secondary products in supersymmetric field theory. Annales Henri Poincaré 21(4), 1235–1310 (2020). arXiv:1809.00009 [hep-th]
3. Benini, M., Musante, G., Schenkel, A.: Quantization of Lorentzian free BV theories: factorization algebra vs algebraic quantum field theory, arXiv:2212.02546 [math-ph]
4. Benini, M., Perin, M., Schenkel, A.: Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds. Commun. Math. Phys. 377(2), 971–997 (2019). arXiv:1903.03396 [math-ph]
5. Carmona, V., Flores, R., Muro, F.: A model structure for locally constant factorization algebras, arXiv:2107.14174 [math.AT]