Gluing Small Black Holes into Initial Data Sets

Author:

Hintz PeterORCID

Abstract

AbstractWe prove a strong localized gluing result for the general relativistic constraint equations (with or without cosmological constant) in $$n\ge 3$$ n 3 spatial dimensions. We glue an $$\epsilon $$ ϵ -rescaling of an asymptotically flat data set $$({\hat{\gamma }},{\hat{k}})$$ ( γ ^ , k ^ ) into the neighborhood of a point $$\mathfrak {p}\in X$$ p X inside of another initial data set $$(X,\gamma ,k)$$ ( X , γ , k ) , under a local genericity condition (non-existence of KIDs) near $$\mathfrak {p}$$ p . As the scaling parameter $$\epsilon $$ ϵ tends to 0, the rescalings $$\frac{x}{\epsilon }$$ x ϵ of normal coordinates x on X around $$\mathfrak {p}$$ p become asymptotically flat coordinates on the asymptotically flat data set; outside of any neighborhood of $$\mathfrak {p}$$ p on the other hand, the glued initial data converge back to $$(\gamma ,k)$$ ( γ , k ) . The initial data we construct enjoy polyhomogeneous regularity jointly in $$\epsilon $$ ϵ and the (rescaled) spatial coordinates. Applying our construction to unit mass black hole data sets $$(X,\gamma ,k)$$ ( X , γ , k ) and appropriate boosted Kerr initial data sets $$({\hat{\gamma }},{\hat{k}})$$ ( γ ^ , k ^ ) produces initial data which conjecturally evolve into the extreme mass ratio inspiral of a unit mass and a mass $$\epsilon $$ ϵ black hole. The proof combines a variant of the gluing method introduced by Corvino and Schoen with geometric singular analysis techniques originating in Melrose’s work. On a technical level, we present a fully geometric microlocal treatment of the solvability theory for the linearized constraints map.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Reference74 articles.

1. Aretakis, S., Czimek, S., Rodnianski, I.: The characteristic gluing problem for the Einstein equations and applications. Preprint arXiv:2107.02441 (2021)

2. Aretakis, S., Czimek, S., Rodnianski, I.: The characteristic gluing problem for the Einstein vacuum equations. Linear and non-linear analysis. Preprint, arXiv:2107.02449, (2021)

3. Aretakis, S., Czimek, S., Rodnianski, I.: Characteristic gluing to the Kerr family and application to spacelike gluing. arXiv preprint arXiv:2107.02456, (2021)

4. Anderson, M.T., Jauregui, J.L.: Embeddings, immersions and the bartnik quasi-local mass conjectures. Annales Henri Poincaré 20(5), 1651–1698 (2019). https://doi.org/10.1007/s00023-019-00786-3

5. Bartnik, R.: New definition of quasilocal mass. Phys. Rev. Lett. 62, 2346–2348 (1989). https://doi.org/10.1103/PhysRevLett.62.2346

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The linearized Einstein equations with sources;Letters in Mathematical Physics;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3