Abstract
AbstractWe consider solutions to the generalized Surface Quasi-geostrophic equation ($$\gamma $$
γ
-SQG) when the velocity is more singular than the active scalar function (i.e. $$\gamma \in (0,1)$$
γ
∈
(
0
,
1
)
). In this paper we establish strong ill-posedness in $$C^{k,\beta }$$
C
k
,
β
($$k\ge 1$$
k
≥
1
, $$\beta \in (0,1]$$
β
∈
(
0
,
1
]
and $$k+\beta >1+\gamma $$
k
+
β
>
1
+
γ
) and we also construct solutions in $$\mathbb {R}^2$$
R
2
that initially are in $$C^{k,\beta }\cap L^2$$
C
k
,
β
∩
L
2
but are not in $$C^{k,\beta }$$
C
k
,
β
for $$t>0$$
t
>
0
. Furthermore these solutions stay in $$H^{k+\beta +1-2\delta }$$
H
k
+
β
+
1
-
2
δ
for some small $$\delta $$
δ
and an arbitrarily long time.
Funder
Ministerio de Ciencia e Innovación
HORIZON EUROPE European Research Council
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Ambrose, D.M., Cozzi, E., Erickson, D., Kelliher, J.P.: Pre-print. Existence of solutions to fluid equations in Holder and uniformly local Sobolev spaces. arXiv:2206.05861
2. Ao, W., Dávila, J., del Pino, M., Musso, M., Wei, J.: Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation. Trans. Am. Math. Soc. 374(9), 6665–6689 (2021)
3. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201(1), 97–157 (2014)
4. Bourgain, J., Li, D.: Strong illposedness of the incompressible Euler equation in integer $$C^m$$ spaces. Geom. Funct. Anal. 25(1), 1–86 (2015)
5. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math. 72(9), 1809–1874 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献