Approximation Theorems for the Schrödinger Equation and Quantum Vortex Reconnection

Author:

Enciso Alberto,Peralta-Salas DanielORCID

Abstract

AbstractWe prove the existence of smooth solutions to the Gross–Pitaevskii equation on $$\mathbb {R}^3$$ R 3 that feature arbitrarily complex quantum vortex reconnections. We can track the evolution of the vortices during the whole process. This permits to describe the reconnection events in detail and verify that this scenario exhibits the properties observed in experiments and numerics, such as the $$t^{1/2}$$ t 1 / 2 and change of parity laws. We are mostly interested in solutions tending to 1 at infinity, which have finite Ginzburg–Landau energy and physically correspond to the presence of a background chemical potential, but we also consider the cases of Schwartz initial data and of the Gross–Pitaevskii equation on the torus. In the proof, the Gross–Pitaevskii equation operates in a nearly linear regime, so the result applies to a wide range of nonlinear Schrödinger equations. Indeed, an essential ingredient in the proofs is the development of novel global approximation theorems for the Schrödinger equation on $$\mathbb {R}^n$$ R n . Specifically, we prove a qualitative approximation result that applies for solutions defined on very general spacetime sets and also a quantitative result for solutions on product sets in spacetime $$D\times \mathbb {R}$$ D × R . This hinges on frequency-dependent estimates for the Helmholtz–Yukawa equation that are of independent interest.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3