Generating Diffusions with Fractional Brownian Motion

Author:

Hairer MartinORCID,Li Xue-MeiORCID

Abstract

AbstractWe study fast/slow systems driven by a fractional Brownian motion B with Hurst parameter $$H\in (\frac{1}{3}, 1]$$ H ( 1 3 , 1 ] . Surprisingly, the slow dynamic converges on suitable timescales to a limiting Markov process and we describe its generator. More precisely, if $$Y^\varepsilon $$ Y ε denotes a Markov process with sufficiently good mixing properties evolving on a fast timescale $$\varepsilon \ll 1$$ ε 1 , the solutions of the equation $$\begin{aligned} dX^\varepsilon = {\varepsilon }^{\frac{1}{2}-H} F(X^\varepsilon ,Y^\varepsilon )\,dB+F_0(X^\varepsilon ,Y^{\varepsilon })\,dt\; \end{aligned}$$ d X ε = ε 1 2 - H F ( X ε , Y ε ) d B + F 0 ( X ε , Y ε ) d t converge to a regular diffusion without having to assume that F averages to 0, provided that $$H< \frac{1}{2}$$ H < 1 2 . For $$H > \frac{1}{2}$$ H > 1 2 , a similar result holds, but this time it does require F to average to 0. We also prove that the n-point motions converge to those of a Kunita type SDE. One nice interpretation of this result is that it provides a continuous interpolation between the time homogenisation theorem for random ODEs with rapidly oscillating right-hand sides ($$H=1$$ H = 1 ) and the averaging of diffusion processes ($$H= \frac{1}{2}$$ H = 1 2 ).

Funder

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3