Abstract
AbstractGiven a suitable solution V(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data $$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$
u
(
0
,
x
)
∈
V
(
0
,
x
)
+
H
-
1
(
R
)
. Our conditions on V do include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles $$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$
V
(
0
,
x
)
∈
H
5
(
R
/
Z
)
satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022. https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019. https://doi.org/10.4007/annals.2019.190.1.4) where $$V\equiv 0$$
V
≡
0
. In that setting, it is known that $$H^{-1}(\mathbb {R})$$
H
-
1
(
R
)
is sharp in the class of $$H^s(\mathbb {R})$$
H
s
(
R
)
spaces.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference96 articles.
1. Alves, G., Natali, F., Pastor, A.: Sufficient conditions for orbital stability of periodic traveling waves. J. Differ. Equ. 267(2), 879–901 (2019). https://doi.org/10.1016/j.jde.2019.01.029
2. Andreiev, K., Egorova, I., Lange, T.L., Teschl, G.: Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent. J. Differ. Equ. 261(10), 5371–5410 (2016). https://doi.org/10.1016/j.jde.2016.08.009
3. Angulo Pava, J., Bona, J.L., Scialom, M.: Stability of cnoidal waves. Adv. Differ. Equ. 11(12), 1321–1374 (2006)
4. Angulo Pava, J., Natali, F.: Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions. SIAM J. Math. Anal. 40(3), 1123–1151 (2008). https://doi.org/10.1137/080718450
5. Angulo Pava, J., Natali, F.: On the instability of periodic waves for dispersive equations. Differ. Integral Equ. 29(9–10), 837–874 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献