Author:
Azamov N. A.,Carey A. L.,Sukochev F. A.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference36 articles.
1. Asplund E. and Bungart L. (1966). A First Course in Integration. Holt, Rinehart and Winston, New York
2. Atiyah M., Patodi V. and Singer I.M. (1976). Spectral Asymmetry and Riemannian Geometry. III. Math. Proc. Camb. Phil. Soc. 79: 71–99
3. Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift and spectral flow. to appear in Canad. J. Math, available at http://arxiv.org/list/math/0703442, 2007
4. Azamov N.A., Dodds P.G. and Sukochev F.A. (2006). The Krein spectral shift function in semi-finite von Neumann algebras. Integral Equations Operator Theory 55: 347–362
5. Benameur, M.-T., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Analysis, geometry and topology of elliptic operators, Hackensack, NJ: World Sci. Publ., 2006, pp. 297–352
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Approximation of the Spectral Action Functional in the Case of $$\tau $$-Compact Resolvents;Integral Equations and Operator Theory;2023-09
2. The Witten index and the spectral shift function;Reviews in Mathematical Physics;2022-02-17
3. Index Theory Beyond the Fredholm Case;Lecture Notes in Mathematics;2022
4. Spectral Flow;Lecture Notes in Mathematics;2022
5. Introduction;Lecture Notes in Mathematics;2022