1. van Straten, D.: Calabi–Yau operators. In: Uniformization, Riemann–Hilbert correspondence, Calabi–Yau manifolds & Picard-Fuchs equations, volume 42 of Adv. Lect. Math. (ALM), pp. 401–451. Int. Press, Somerville (2018)
2. Candelas, P., de la Ossa, X., Green, P.S., Parkes, L.: A Pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991). ([AMS/IP Stud. Adv. Math.9,31(1998)])
3. Huang, M.-X., Klemm, A., Quackenbush, S.: Topological string theory on compact Calabi–Yau: modularity and boundary conditions. In: Homological Mirror Symmetry, Volume 757 of Lecture Notes in Physics, pp. 45–102. Springer, Berlin (2009)
4. Scheidegger, E.: Analytic continuation of hypergeometric functions in the resonant case (2016). arXiv:1602.01384 [math.CA]
5. Hosono, S.: Central charges, symplectic forms, and hypergeometric series in local mirror symmetry. In: Mirror Symmetry, Volume 38 of AMS/IP Stud. Adv. Math., pp. 405–439. American Mathematical Society, Providence (2006)