Abstract
AbstractUsing numerical integration, in 1969 Penston (Mon Not R Astr Soc 144:425–448, 1969) and Larson (Mon Not R Astr Soc 145:271–295, 1969) independently discovered a self-similar solution describing the collapse of a self-gravitating asymptotically flat fluid with the isothermal equation of state $$p=k\varrho $$
p
=
k
ϱ
, $$k>0$$
k
>
0
, and subject to Newtonian gravity. We rigorously prove the existence of such a Larson–Penston solution.
Funder
Engineering and Physical Sciences Research Council
National Science Foundation
Simons Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference25 articles.
1. Bae, M., Chen, G.-Q., Feldman, M.: Regularity of solutions to regular shock reflection for potential flow. Invent. Math. 175(3), 505–543 (2009)
2. Brenner, M.P., Witelski, T.P.: On spherically symmetric gravitational collapse. J. Stat. Phys. 93(3/4), 863–899 (1998)
3. Chen, G.-Q., Feldman, M.: The mathematics of shock reflection-diffraction and von Neumann’s conjectures. Annals of Mathematics Studies, vol. 197. Princeton University Press, Princeton (2018)
4. Deng, Y., Liu, T.P., Yang, T., Yao, Z.: Solutions of Euler–Poisson equations for gaseous stars. Arch. Ration. Mech. Anal. 164(3), 261–285 (2002)
5. Fu, C.-C., Lin, S.-S.: On the critical mass of the collapse of a gaseous star in spherically symmetric and isentropic motion. Jpn. J. Ind. Appl. Math. 15(3), 461–469 (1998)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献