Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness

Author:

Blanca Antonio,Gheissari Reza

Abstract

AbstractWe establish rapid mixing of the random-cluster Glauber dynamics on random $$\varDelta $$ Δ -regular graphs for all $$q\ge 1$$ q 1 and $$p<p_u(q,\varDelta )$$ p < p u ( q , Δ ) , where the threshold $$p_u(q,\varDelta )$$ p u ( q , Δ ) corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) $$\varDelta $$ Δ -regular tree. It is expected that this threshold is sharp, and for $$q>2$$ q > 2 the Glauber dynamics on random $$\varDelta $$ Δ -regular graphs undergoes an exponential slowdown at $$p_u(q,\varDelta )$$ p u ( q , Δ ) . More precisely, we show that for every $$q\ge 1$$ q 1 , $$\varDelta \ge 3$$ Δ 3 , and $$p<p_u(q,\varDelta )$$ p < p u ( q , Δ ) , with probability $$1-o(1)$$ 1 - o ( 1 ) over the choice of a random $$\varDelta $$ Δ -regular graph on n vertices, the Glauber dynamics for the random-cluster model has $$\varTheta (n \log n)$$ Θ ( n log n ) mixing time. As a corollary, we deduce fast mixing of the Swendsen–Wang dynamics for the Potts model on random $$\varDelta $$ Δ -regular graphs for every $$q\ge 2$$ q 2 , in the tree uniqueness region. Our proof relies on a sharp bound on the “shattering time”, i.e., the number of steps required to break up any configuration into $$O(\log n)$$ O ( log n ) sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.

Funder

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference54 articles.

1. Alexander, K.S.: On weak mixing in lattice models. Probab. Theory Relat. Fields 110(4), 441–471 (1998). https://doi.org/10.1007/s004400050155

2. Bezáková, I., Blanca, A., Chen, Z., Štefankovič, D., Vigoda, E.: Lower bounds for testing graphical models: colorings and antiferromagnetic Ising models. J. Mach. Learn. Res. 21(25), 1–62 (2020)

3. Blanca, A., Caputo, P., Parisi, D., Sinclair, A., Vigoda, E.: Entropy decay in the Swendsen–Wang dynamics (2020). Preprint available at arXiv:2007.06931

4. Blanca, A., Chen, Z., Vigoda, E.: Swendsen–Wang dynamics for general graphs in the tree uniqueness region. Random Struct. Algorithms 56(2), 373–400 (2020). https://doi.org/10.1002/rsa.20858

5. Blanca, A., Galanis, A., Goldberg, L., Štefankovic, D., Vigoda, E., Yang, K.: Sampling in uniqueness from the Potts and random-cluster models on random regular graphs. In: Proceedings of APPROX RANDOM (2018)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the tractability of sampling from the Potts model at low temperatures via random-cluster dynamics;Probability Theory and Related Fields;2024-06-08

2. Algorithms for the ferromagnetic Potts model on expanders;Combinatorics, Probability and Computing;2024-04-05

3. Sampling from Potts on random graphs of unbounded degree via random-cluster dynamics;The Annals of Applied Probability;2023-12-01

4. Sampling from the Potts model at low temperatures via Swendsen–Wang dynamics;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

5. Low-temperature Ising dynamics with random initializations;The Annals of Applied Probability;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3