Duality for Optimal Couplings in Free Probability

Author:

Gangbo WilfridORCID,Jekel DavidORCID,Nam Kyeongsik,Shlyakhtenko DimitriORCID

Abstract

AbstractWe study the free probabilistic analog of optimal couplings for the quadratic cost, where classical probability spaces are replaced by tracial von Neumann algebras, and probability measures on $${\mathbb {R}}^m$$ R m are replaced by non-commutative laws of m-tuples. We prove an analog of the Monge–Kantorovich duality which characterizes optimal couplings of non-commutative laws with respect to Biane and Voiculescu’s non-commutative $$L^2$$ L 2 -Wasserstein distance using a new type of convex functions. As a consequence, we show that if (XY) is a pair of optimally coupled m-tuples of non-commutative random variables in a tracial $$\mathrm {W}^*$$ W -algebra $$\mathcal {A}$$ A , then $$\mathrm {W}^*((1 - t)X + tY) = \mathrm {W}^*(X,Y)$$ W ( ( 1 - t ) X + t Y ) = W ( X , Y ) for all $$t \in (0,1)$$ t ( 0 , 1 ) . Finally, we illustrate the subtleties of non-commutative optimal couplings through connections with results in quantum information theory and operator algebras. For instance, two non-commutative laws that can be realized in finite-dimensional algebras may still require an infinite-dimensional algebra to optimally couple. Moreover, the space of non-commutative laws of m-tuples is not separable with respect to the Wasserstein distance for $$m > 1$$ m > 1 .

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal transport for types and convex analysis for definable predicates in tracial W⁎-algebras;Journal of Functional Analysis;2024-11

2. Wasserstein distance between noncommutative dynamical systems;Journal of Mathematical Analysis and Applications;2023-11

3. Vanishing first cohomology and strong 1-boundedness for von Neumann algebras;Journal of Noncommutative Geometry;2023-10-27

4. Coupling capacity in C*-algebras;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3