Ising Model on Random Triangulations of the Disk: Phase Transition

Author:

Chen Linxiao,Turunen JoonasORCID

Abstract

AbstractIn Chen and Turunen (Commun Math Phys 374(3):1577–1643, 2020), we have studied the Boltzmann random triangulation of the disk coupled to an Ising model on its faces with Dobrushin boundary condition at its critical temperature. In this paper, we investigate the phase transition of this model by extending our previous results to arbitrary temperature: We compute the partition function of the model at all temperatures, and derive several critical exponents associated with the infinite perimeter limit. We show that the model has a local limit at any temperature, whose properties depend drastically on the temperature. At high temperatures, the local limit is reminiscent of the uniform infinite half-planar triangulation decorated with a subcritical percolation. At low temperatures, the local limit develops a bottleneck of finite width due to the energy cost of the main Ising interface between the two spin clusters imposed by the Dobrushin boundary condition. This change can be summarized by a novel order parameter with a nice geometric meaning. In addition to the phase transition, we also generalize our construction of the local limit from the two-step asymptotic regime used in Chen and Turunen (2020) to a more natural diagonal asymptotic regime. We obtain in this regime a scaling limit related to the length of the main Ising interface, which coincides with predictions from the continuum theory of quantum surfaces (a.k.a. Liouville quantum gravity).

Funder

H2020 European Research Council

Icelandic Centre for Research

Agence Nationale de la Recherche

Academy of Finland

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3