Author:
Lindsay J. Martin,Skalski Adam G.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference62 articles.
1. Accardi, L.: On the quantum Feynman-Kac formula. Rend. Sem. Mat. Fis. Milano 48, 135–180 (1980)
2. Accardi, L., Frigerio, A., Lewis, J.: Quantum stochastic processes. Publ. Res. Inst. Math. Sci. 18(1), 97–133 (1982)
3. Applebaum, D., Bhat, B.V.R., Kustermans, J., Lindsay, J.M.: Quantum Independent Increment Processes. Vol. I: From Classical Probability to Quantum Stochastics, eds. U. Franz, M. Schürmann, Lecture Notes in Mathematics 1865, Heidelberg: Springer, 2005
4. Arveson, W.: Noncommutative dynamics and E-semigroups. Springer, New York (2003)
5. Accardi, L., Schürmann, M., von Waldenfels, W.: Quantum independent increment processes on superalgebras. Math. Z. 198(4), 451–477 (1988)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Around Property (T) for Quantum Groups;Communications in Mathematical Physics;2017-04-04
2. The Haagerup property for locally compact quantum groups;Journal für die reine und angewandte Mathematik (Crelles Journal);2016-01-01
3. Quantum random walk approximation in Banach algebra;Journal of Mathematical Analysis and Applications;2015-10
4. Sesquilinear quantum stochastic analysis in Banach space;Journal of Mathematical Analysis and Applications;2014-01
5. Quantum Feynman-Kac perturbations;Journal of the London Mathematical Society;2013-10-30