Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference24 articles.
1. Bray, H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Thesis, Stanford University (1997)
2. Bray H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)
3. Bray, H., Chruściel, P.: The Penrose inequality. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 39–70. Birkhäuser, Basel (2004)
4. Brendle S., Chodosh O.: A volume comparison theorem for asymptotically hyperbolic manifolds. Commun. Math. Phys. 332(2), 839–846 (2014)
5. Chodosh, O.: Large isoperimetric regions in asymptotically hyperbolic manifolds. arXiv:1403.6108
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献