Stress Tensor Bounds on Quantum Fields

Author:

Sanders KoORCID

Abstract

AbstractThe singular behaviour of quantum fields in Minkowski space can often be bounded by polynomials of the Hamiltonian H. These so-called H-bounds and related techniques allow us to handle pointwise quantum fields and their operator product expansions in a mathematically rigorous way. A drawback of this approach, however, is that the Hamiltonian is a global rather than a local operator and, moreover, it is not defined in generic curved spacetimes. In order to overcome this drawback we investigate the possibility of replacing H by a component of the stress tensor, essentially an energy density, to obtain analogous bounds. For definiteness we consider a massive, minimally coupled free Hermitean scalar field. Using novel results on distributions of positive type we show that in any globally hyperbolic Lorentzian manifold M for any $$f,F\in C_0^{\infty }(M)$$ f , F C 0 ( M ) with $$F\equiv 1$$ F 1 on $$\textrm{supp}(f)$$ supp ( f ) and any timelike smooth vector field $$t^{\mu }$$ t μ we can find constants $$c,C>0$$ c , C > 0 such that $$\omega (\phi (f)^*\phi (f))\le C(\omega (T^{\textrm{ren}}_{\mu \nu }(t^{\mu }t^{\nu }F^2))+c)$$ ω ( ϕ ( f ) ϕ ( f ) ) C ( ω ( T μ ν ren ( t μ t ν F 2 ) ) + c ) for all (not necessarily quasi-free) Hadamard states $$\omega $$ ω . This is essentially a new type of quantum energy inequality that entails a stress tensor bound on the smeared quantum field. In $$1+1$$ 1 + 1 dimensions we also establish a bound on the pointwise quantum field, namely $$|\omega (\phi (x))|\le C(\omega (T^{\textrm{ren}}_{\mu \nu }(t^{\mu }t^{\nu }F^2))+c)$$ | ω ( ϕ ( x ) ) | C ( ω ( T μ ν ren ( t μ t ν F 2 ) ) + c ) , where $$F\equiv 1$$ F 1 near x.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3