Abstract
AbstractWe establish factoriality of q-Araki-Woods von Neumann algebras (with the number of generators at least two) in full generality, exploiting the approach via conjugate variables developed recently in the tracial case by Akihiro Miyagawa and Roland Speicher, and abstract results of Brent Nelson. We also establish non-injectivity and determine the type of the factors in question. The factors are solid and full when the number of generators is finite.
Funder
Narodowe Centrum Nauki
Narodowa Agencja Wymiany Akademickiej
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference21 articles.
1. Avsec, S., Brannan, M., Wasilewski, M.: Complete metric approximation property for q-Araki-Woods algebras. J. Funct. Anal. 274(2), 544–572 (2018)
2. Bożejko, M., Kümmerer, B., Speicher, R.: q-Gaussian processes: noncommutative and classical aspects. Commun. Math. Phys. 185(1), 129–154 (1997)
3. Bikram, P., Mukherjee, K.: Generator masas in $$q$$-deformed Araki-Woods von Neumann algebras and factoriality. J. Funct. Anal. 273(4), 1443–1478 (2017)
4. Bikram, P., Mukherjee, K., Ricard, É., Wang, S.: On the factoriality of $$q$$-deformed Araki-Woods von Neumann algebras. Commun. Math. Phys. 398(2), 797–821 (2023)
5. Caspers, M.: On the isomorphism class of $$q$$-Gaussian $$W^*$$-algebras for infinite variables. Comptes Rendus de l’Académie des Sciences (to appear). arXiv:2203.06366
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献