Abstract
AbstractWe show that motivic Donaldson–Thomas invariants of a symmetric quiver Q, captured by the generating function $$P_Q$$
P
Q
, can be encoded in another quiver $$Q^{(\infty )}$$
Q
(
∞
)
of (almost always) infinite size, whose only arrows are loops, and whose generating function $$P_{Q^{(\infty )}}$$
P
Q
(
∞
)
is equal to $$P_Q$$
P
Q
upon appropriate identification of generating parameters. Consequences of this statement include a generalization of the proof of integrality of Donaldson–Thomas and Labastida–Mariño–Ooguri–Vafa invariants that count open BPS states, as well as expressing motivic Donaldson–Thomas invariants of an arbitrary symmetric quiver in terms of invariants of m-loop quivers. In particular, this means that the already known combinatorial interpretation of invariants of m-loop quivers extends to arbitrary symmetric quivers.
Funder
Fundacja na rzecz Nauki Polskiej
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministerstwo Edukacji i Nauki
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference40 articles.
1. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv:0811.2435
2. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Commun. Num. Theor. Phys. 5, 231–352 (2011). arXiv:1006.2706
3. Efimov, A.I.: Cohomological Hall algebra of a symmetric quiver. Compos. Math. 148(4), 1133–1146 (2012). arXiv:1103.2736
4. Reineke, M.: Degenerate cohomological hall algebra and quantized Donaldson–Thomas invariants for m-loop quivers. Doc. Math. 17, 1 (2012). arXiv:1102.3978
5. Franzen, H., Reineke, M.: Semi-stable Chow–Hall algebras of quivers and quantized Donaldson–Thomas invariants. Algebra Number Theory 12(5), 1001–1025 (2018). arXiv:1512.03748
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献