Mathematical Structures of Non-perturbative Topological String Theory: From GW to DT Invariants

Author:

Alim Murad,Saha Arpan,Teschner Jörg,Tulli IvánORCID

Abstract

AbstractWe study the Borel summation of the Gromov–Witten potential for the resolved conifold. The Stokes phenomena associated to this Borel summation are shown to encode the Donaldson–Thomas (DT) invariants of the resolved conifold, having a direct relation to the Riemann–Hilbert problem formulated by Bridgeland (Invent Math 216(1), 69–124, 2019). There exist distinguished integration contours for which the Borel summation reproduces previous proposals for the non-perturbative topological string partition functions of the resolved conifold. These partition functions are shown to have another asymptotic expansion at strong topological string coupling. We demonstrate that the Stokes phenomena of the strong-coupling expansion encode the DT invariants of the resolved conifold in a second way. Mathematically, one finds a relation to Riemann–Hilbert problems associated to DT invariants which is different from the one found at weak coupling. The Stokes phenomena of the strong-coupling expansion turn out to be closely related to the wall-crossing phenomena in the spectrum of BPS states on the resolved conifold studied in the context of supergravity by Jafferis and Moore (Wall crossing in local Calabi Yau manifolds, arXiv:0810.4909, 2008).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference74 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resurgence of Refined Topological Strings and Dual Partition Functions;Symmetry, Integrability and Geometry: Methods and Applications;2024-08-06

2. Relations between Stokes constants of unrefined and Nekrasov-Shatashvili topological strings;Journal of High Energy Physics;2024-05-16

3. Resurgent Structure of the Topological String and the First Painlevé Equation;Symmetry, Integrability and Geometry: Methods and Applications;2024-04-02

4. Non-perturbative topological string theory on compact Calabi-Yau 3-folds;SciPost Physics;2024-03-19

5. Exact multi-instantons in topological string theory;SciPost Physics;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3