Abstract
AbstractThis paper is devoted to algebro-geometric study of infinite dimensional Lie bialgebras, which arise from solutions of the classical Yang–Baxter equation. We regard trigonometric solutions of this equation as twists of the standard Lie bialgebra cobracket on an appropriate affine Lie algebra and work out the corresponding theory of Manin triples, putting it into an algebro-geometric context. As a consequence of this approach, we prove that any trigonometric solution of the classical Yang–Baxter equation arises from an appropriate algebro-geometric datum. The developed theory is illustrated by some concrete examples.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference50 articles.
1. Abedin, R., Maximov, S.: Classification of classical twists of the standard Lie bialgebra structure on a loop algebra. J. Geom. Phys. 164, 104149 (2021)
2. Atiyah, M.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) 7, 414–452 (1957)
3. Babelon, O., Bernard, D., Talon, M.: Introduction to classical integrable systems. Cambridge University Press, NY (2003)
4. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4. Springer, NY (2004)
5. Belavin, A.: Discrete groups and integrability of quantum systems. Funct. Anal. Appl. 14(4), 18–26 (1980)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献