Author:
Cuccagna Scipio,Mizumachi Tetsu
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference46 articles.
1. Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations. Grundlehren der Mathematischen Wissenschaften 250, New York: Springer-Verlag, 1983
2. Buslaev V.S., Perelman G.S.: Scattering for the nonlinear Schrödinger equation: states close to a soliton. St. Petersburg Math. J. 4, 1111–1142 (1993)
3. Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear evolution equations, N.N. Uraltseva, ed. Transl. Ser. 2, 164, Providence, RI: Amer. Math. Soc., 1995, pp 75–98
4. Buslaev V.S., Sulem C.: On the asymptotic stability of solitary waves of Nonlinear Schrödinger equations. Ann. Inst. H. Poincaré. An. Nonlin. 20, 419–475 (2003)
5. Cazenave, T.: Semilinear Schrodinger equations. Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc., 2003
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Klein–Gordon equation with mean field interaction. Orbital and asymptotic stability of solitary waves
*;Nonlinearity;2022-06-16
2. Index;Attractors of Hamiltonian Nonlinear Partial Differential Equations;2021-09-30
3. Bibliography;Attractors of Hamiltonian Nonlinear Partial Differential Equations;2021-09-30
4. Attractors and Quantum Mechanics;Attractors of Hamiltonian Nonlinear Partial Differential Equations;2021-09-30
5. Dispersive Decay;Attractors of Hamiltonian Nonlinear Partial Differential Equations;2021-09-30