Quantum Spectral Problems and Isomonodromic Deformations

Author:

Bershtein Mikhail,Gavrylenko PavloORCID,Grassi Alba

Abstract

AbstractWe develop a self-consistent approach to study the spectral properties of a class of quantum mechanical operators by using the knowledge about monodromies of $$2\times 2$$ 2 × 2 linear systems (Riemann–Hilbert correspondence). Our technique applies to a variety of problems, though in this paper we only analyse in detail two examples. First we review the case of the (modified) Mathieu operator, which corresponds to a certain linear system on the sphere and makes contact with the Painlevé $$\mathrm {III}_3$$ III 3 equation. Then we extend the analysis to the 2-particle elliptic Calogero–Moser operator, which corresponds to a linear system on the torus. By using the Kyiv formula for the isomonodromic tau functions, we obtain the spectrum of such operators in terms of self-dual Nekrasov functions ($$\epsilon _1+\epsilon _2=0$$ ϵ 1 + ϵ 2 = 0 ). Through blowup relations, we also find Nekrasov–Shatashvili type of quantizations ($$\epsilon _2=0$$ ϵ 2 = 0 ). In the case of the torus with one regular singularity we obtain certain results which are interesting by themselves. Namely, we derive blowup equations (filling some gaps in the literature) and we relate them to the bilinear form of the isomonodromic deformation equations. In addition, we extract the $$\epsilon _2\rightarrow 0$$ ϵ 2 0 limit of the blowup relations from the regularized action functional and CFT arguments.

Funder

Russian Science Foundation

Fonds National Suisse

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expansions for semiclassical conformal blocks;Journal of High Energy Physics;2024-08-14

2. Painlevé Kernels and Surface Defects at Strong Coupling;Annales Henri Poincaré;2024-07-14

3. Exponential Networks, WKB and Topological String;Symmetry, Integrability and Geometry: Methods and Applications;2023-09-13

4. Generating Function of Monodromy Symplectomorphism for 2 × 2 Fuchsian Systems and Its WKB Expansion;Zurnal matematiceskoj fiziki, analiza, geometrii;2023-03-25

5. Perturbative connection formulas for Heun equations;Journal of Physics A: Mathematical and Theoretical;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3