Higher Order Large Gap Asymptotics at the Hard Edge for Muttalib–Borodin Ensembles

Author:

Charlier Christophe,Lenells Jonatan,Mauersberger JulianORCID

Abstract

AbstractWe consider the limiting process that arises at the hard edge of Muttalib–Borodin ensembles. This point process depends on $$\theta > 0$$ θ > 0 and has a kernel built out of Wright’s generalized Bessel functions. In a recent paper, Claeys, Girotti and Stivigny have established first and second order asymptotics for large gap probabilities in these ensembles. These asymptotics take the form $$\begin{aligned} {\mathbb {P}}(\text{ gap } \text{ on } [0,s]) = C \exp \left( -a s^{2\rho } + b s^{\rho } + c \ln s \right) (1 + o(1)) \qquad \text{ as } s \rightarrow + \infty , \end{aligned}$$ P ( gap on [ 0 , s ] ) = C exp - a s 2 ρ + b s ρ + c ln s ( 1 + o ( 1 ) ) as s + , where the constants $$\rho $$ ρ , a, and b have been derived explicitly via a differential identity in s and the analysis of a Riemann–Hilbert problem. Their method can be used to evaluate c (with more efforts), but does not allow for the evaluation of C. In this work, we obtain expressions for the constants c and C by employing a differential identity in $$\theta $$ θ . When $$\theta $$ θ is rational, we find that C can be expressed in terms of Barnes’ G-function. We also show that the asymptotic formula can be extended to all orders in s.

Funder

European Research Council

Vetenskapsrådet

Ruth and Nils-Erik Stenbäck foundation

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference31 articles.

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. (1983)

2. Adamchik, V.S.: Polygamma functions of negative order. J. Comput. Appl. Math. 100, 191–199 (1998)

3. Bertola, M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294, 539–579 (2010)

4. Bertola, M., Cafasso, M.: The transition between the gap probabilities from the Pearcey to the airy process-a Riemann-Hilbert approach. Int. Math. Res. Not. 2012, 1519–1568 (2012)

5. Bloom, T., Levenberg, N., Totik, V., Wielonsky, F.: Modified logarithmic potential theory and applications. Int. Math. Res. Not. IMRN 2017, 1116–1154 (2017)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3