The Hawking–Penrose Singularity Theorem for $$C^1$$-Lorentzian Metrics

Author:

Kunzinger MichaelORCID,Ohanyan Argam,Schinnerl Benedict,Steinbauer Roland

Abstract

AbstractWe extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity $$C^1$$ C 1 . For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for $$C^1$$ C 1 -metrics (Graf in Commun Math Phys 378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and $$C^{1,1}$$ C 1 , 1 -settings. In addition, we develop refinements of the comparison techniques used in the proof of the $$C^{1,1}$$ C 1 , 1 -version of the theorem (Graf in Commun Math Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory are collected in an appendix.

Funder

FWF

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference51 articles.

1. Alexander, S., Graf, M., Kunzinger, M., Sämann, C.: Generalized cones as Lorentzian length spaces: causality, curvature, and singularity theorems, Comm. Anal. Geom. (to appear)

2. Barvinek, E., Daler, I., Francocircu, J.: Convergence of sequences of inverse functions. Arch. Math. (Brno) 27B, 201–204 (1991)

3. Bourbaki, N.: Elements of Mathematics. Algebra, Part I: Chapters 1–3. Hermann, Paris (1974)

4. Cavalletti, F., Mondino, A.: Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. arXiv: 2004.08934

5. Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Classical Quantum Gravity 29(14), 145001, 32 (2012)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radial gravitational collapse causes timelike incompleteness;Physical Review D;2024-04-15

2. On the space of compact diamonds of Lorentzian length spaces;Classical and Quantum Gravity;2024-02-14

3. Timelike Ricci bounds for low regularity spacetimes by optimal transport;Communications in Contemporary Mathematics;2023-12-14

4. On the initial singularity and extendibility of flat quasi-de Sitter spacetimes;Journal of High Energy Physics;2023-10-30

5. Synthetic versus distributional lower Ricci curvature bounds;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3