Homological Invariants of Pauli Stabilizer Codes

Author:

Ruba BlazejORCID,Yang Bowen

Abstract

AbstractWe study translationally invariant Pauli stabilizer codes with qudits of arbitrary, not necessarily uniform, dimensions. Using homological methods, we define a series of invariants called charge modules. We describe their properties and physical meaning. The most complete results are obtained for codes whose charge modules have Krull dimension zero. This condition is interpreted as mobility of excitations. We show that it is always satisfied for translation invariant 2D codes with unique ground state in infinite volume, which was previously known only in the case of uniform, prime qudit dimension. For codes all of whose excitations are mobile we construct a p-dimensional excitation and a $$(D-p-1)$$ ( D - p - 1 ) -form symmetry for every element of the p-th charge module. Moreover, we define a braiding pairing between charge modules in complementary degrees. We discuss examples which illustrate how charge modules and braiding can be computed in practice.

Funder

Kosciuszko Foundation

Simons Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3