Counterexample to the Laptev–Safronov Conjecture

Author:

Bögli SabineORCID,Cuenin Jean-Claude

Abstract

AbstractLaptev and Safronov (Commun Math Phys 292(1):29–54, 2009) conjectured an inequality between the magnitude of eigenvalues of a non-self-adjoint Schrödinger operator on $$\mathbb {R}^d$$ R d , $$d\ge 2$$ d 2 , and an $$L^q$$ L q norm of the potential, for any $$q\in [d/2,d]$$ q [ d / 2 , d ] . Frank (Bull Lond Math Soc 43(4):745–750, 2011) proved that the conjecture is true for $$q\in [d/2,(d+1)/2]$$ q [ d / 2 , ( d + 1 ) / 2 ] . We construct a counterexample that disproves the conjecture in the remaining range $$q\in ((d+1)/2,d]$$ q ( ( d + 1 ) / 2 , d ] . As a corollary of our main result we show that, for any $$q>(d+1)/2$$ q > ( d + 1 ) / 2 , there is a complex potential in $$L^q\cap L^{\infty }$$ L q L such that the discrete eigenvalues of the corresponding Schrödinger operator accumulate at every point in $$[0,\infty )$$ [ 0 , ) . In some sense, our counterexample is the Schrödinger operator analogue of the ubiquitous Knapp example in Harmonic Analysis. We also show that it is adaptable to a larger class of Schrödinger type (pseudodifferential) operators, and we prove corresponding sharp upper bounds.

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lieb–Thirring and Jensen sums for non-self-adjoint Schrödinger operators on the half-line;Journal of Spectral Theory;2024-02-22

2. Recent Developments in Spectral Theory for Non-self-adjoint Hamiltonians;Springer Proceedings in Mathematics & Statistics;2024

3. Uniform Resolvent Estimates for Critical Magnetic Schrödinger Operators in 2D;International Mathematics Research Notices;2023-01-24

4. Improved Lieb–Thirring Type Inequalities for Non-selfadjoint Schrödinger Operators;From Complex Analysis to Operator Theory: A Panorama;2023

5. Schrödinger Operators with Complex Sparse Potentials;Communications in Mathematical Physics;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3