Funder
High Energy Physics
Knut och Alice Wallenbergs Stiftelse
Svenska Forskningsrådet Formas
Polish Ministry of Science and Higher Education
Kwanjeong Educational Foundation
Fundacja na rzecz Nauki Polskiej
European Regional Development Fund
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference60 articles.
1. Aganagic, M., Ekholm, T., Ng, L., Vafa, C.: Topological strings, D-model, and knot contact homology. Adv. Theor. Math. Phys. 18(4), 827–956 (2014). arXiv:1304.5778
2. Awata, H., Gukov, S., Sulkowski, P., Fuji, H.: Volume conjecture: refined and categorified. Adv. Theor. Math. Phys. 16(6), 1669–1777 (2012). arXiv:1203.2182
3. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). hep-th/0305132
4. Arthamonov, S., Mironov, A., Morozov, A., Morozov, A.: Link polynomial calculus and the AENV conjecture. J. High Energy Phys. 4, 2014 (2014). arXiv:1309.7984
5. Andersen, J., Petersen, W.: Asymptotic expansions of the Witten–Reshetikhin–Turaev invariants of mapping tori I. Trans. Am. Math. Soc. 372(8), 5713–5745 (2019). arXiv:1803.09510
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Knots, Perturbative Series and Quantum Modularity;Symmetry, Integrability and Geometry: Methods and Applications;2024-06-24
2. 3d-3d correspondence and 2d $$\mathcal{N}$$ = (0, 2) boundary conditions;Journal of High Energy Physics;2024-03-14
3. Quantum Modular $\widehat Z{}^G$-Invariants;Symmetry, Integrability and Geometry: Methods and Applications;2024-03-09
4. Knot-quiver correspondence for double twist knots;Physical Review D;2023-11-30
5. Knots and Their Related $q$-Series;Symmetry, Integrability and Geometry: Methods and Applications;2023-11-01