Stability Threshold of the 2D Couette Flow in a Homogeneous Magnetic Field Using Symmetric Variables

Author:

Dolce MicheleORCID

Abstract

AbstractWe consider a 2D incompressible and electrically conducting fluid in the domain $${\mathbb {T}}\times {\mathbb {R}}$$ T × R . The aim is to quantify stability properties of the Couette flow (y, 0) with a constant homogenous magnetic field $$(\beta ,0)$$ ( β , 0 ) when $$|\beta |>1/2$$ | β | > 1 / 2 . The focus lies on the regime with small fluid viscosity $$\nu $$ ν , magnetic resistivity $$\mu $$ μ and we assume that the magnetic Prandtl number satisfies $$\mu ^2\lesssim \textrm{Pr}_{\textrm{m}}=\nu /\mu \le 1$$ μ 2 Pr m = ν / μ 1 . We establish that small perturbations around this steady state remain close to it, provided their size is of order $$\varepsilon \ll \nu ^\frac{2}{3}$$ ε ν 2 3 in $$H^N$$ H N with N large enough. Additionally, the vorticity and current density experience a transient growth of order $$\nu ^{-\frac{1}{3}}$$ ν - 1 3 while converging exponentially fast to an x-independent state after a time-scale of order $$\nu ^{-\frac{1}{3}}$$ ν - 1 3 . The growth is driven by an inviscid mechanism, while the subsequent exponential decay results from the interplay between transport and diffusion, leading to the dissipation enhancement. A key argument to prove these results is to reformulate the system in terms of symmetric variables, inspired by the study of inhomogeneous fluid, to effectively characterize the system’s dynamic behavior.

Funder

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3