Moments of the 2D Directed Polymer in the Subcritical Regime and a Generalisation of the Erdös–Taylor Theorem

Author:

Lygkonis Dimitris,Zygouras Nikos

Abstract

AbstractWe compute the limit of the moments of the partition function $$Z_{N}^{\beta _N} $$ Z N β N of the directed polymer in dimension $$d=2$$ d = 2 in the subcritical regime, i.e. when the inverse temperature is scaled as $$\beta _N \sim \hat{\beta } \sqrt{\tfrac{\pi }{\log N}}$$ β N β ^ π log N for $$\hat{\beta } \in (0,1)$$ β ^ ( 0 , 1 ) . In particular, we establish that for every $$h \in {\mathbb {R}}$$ h R , $$ \lim _{N \rightarrow \infty } {{\mathbb {E}}} \big [\big (Z_{N}^{\beta _N}\big )^h \big ]=\big (\frac{1}{1-\hat{\beta }^2}\big )^{\frac{h(h-1)}{2}}.$$ lim N E [ ( Z N β N ) h ] = ( 1 1 - β ^ 2 ) h ( h - 1 ) 2 . We also identify the limit of the moments of the averaged field $$\tfrac{\sqrt{\log N}}{N} \sum _{x \in {\mathbb {Z}}^2} \varphi (\tfrac{x}{\sqrt{N}})\big (Z_{N}^{\beta _N} (x)-1 \big )$$ log N N x Z 2 φ ( x N ) ( Z N β N ( x ) - 1 ) , for $$\varphi \in C_c({\mathbb {R}}^2)$$ φ C c ( R 2 ) , as those of a gaussian free field. As a byproduct, we identify the limiting probability distribution of the total pairwise collisions between h independent, two dimensional random walks starting at the origin. In particular, we derive that $$\begin{aligned} \frac{\pi }{\log N}\sum _{1 \le i<j\le h} {\textsf{L}}_N^{(i,j)}\xrightarrow [N \rightarrow \infty ]{(d)} \Gamma \big ( \tfrac{h(h-1)}{2},1\big ) , \end{aligned}$$ π log N 1 i < j h L N ( i , j ) N ( d ) Γ ( h ( h - 1 ) 2 , 1 ) , where $${{\textsf{L}}}^{(i,j)}_N$$ L N ( i , j ) denotes the collision local time by time N between copies ij and $$\Gamma $$ Γ denotes the Gamma distribution. This generalises a classical result of Erdös and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960).

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference35 articles.

1. Bailey, E.C., Keating, J.P.: Maxima of log-correlated fields: some recent developments. J. Phys. A Math. Theor. 55(5), 053001 (2022)

2. Berestycki, N., Powell, E.: Gaussian free field, Liouville quantum gravity and Gaussian multiplicative chaos. https://homepage.univie.ac.at/nathanael.berestycki/Articles/master.pdf (2021)

3. Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. Ann l’IHP Prob. Stat. 46(2), 414–441 (2010)

4. Biskup, M.: Extrema of the two-dimensional discrete Gaussian free field. In: PIMS-CRM Summer School in Probability. Springer, Cham, pp. 163–407 (2017)

5. Caravenna, F., Sun, R., Zygouras, N.: Universality in marginally relevant disordered systems. Ann. Appl. Prob. 27, 3050–3112 (2017)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3