Author:
Lygkonis Dimitris,Zygouras Nikos
Abstract
AbstractWe compute the limit of the moments of the partition function $$Z_{N}^{\beta _N} $$
Z
N
β
N
of the directed polymer in dimension $$d=2$$
d
=
2
in the subcritical regime, i.e. when the inverse temperature is scaled as $$\beta _N \sim \hat{\beta } \sqrt{\tfrac{\pi }{\log N}}$$
β
N
∼
β
^
π
log
N
for $$\hat{\beta } \in (0,1)$$
β
^
∈
(
0
,
1
)
. In particular, we establish that for every $$h \in {\mathbb {R}}$$
h
∈
R
, $$ \lim _{N \rightarrow \infty } {{\mathbb {E}}} \big [\big (Z_{N}^{\beta _N}\big )^h \big ]=\big (\frac{1}{1-\hat{\beta }^2}\big )^{\frac{h(h-1)}{2}}.$$
lim
N
→
∞
E
[
(
Z
N
β
N
)
h
]
=
(
1
1
-
β
^
2
)
h
(
h
-
1
)
2
.
We also identify the limit of the moments of the averaged field $$\tfrac{\sqrt{\log N}}{N} \sum _{x \in {\mathbb {Z}}^2} \varphi (\tfrac{x}{\sqrt{N}})\big (Z_{N}^{\beta _N} (x)-1 \big )$$
log
N
N
∑
x
∈
Z
2
φ
(
x
N
)
(
Z
N
β
N
(
x
)
-
1
)
, for $$\varphi \in C_c({\mathbb {R}}^2)$$
φ
∈
C
c
(
R
2
)
, as those of a gaussian free field. As a byproduct, we identify the limiting probability distribution of the total pairwise collisions between h independent, two dimensional random walks starting at the origin. In particular, we derive that $$\begin{aligned} \frac{\pi }{\log N}\sum _{1 \le i<j\le h} {\textsf{L}}_N^{(i,j)}\xrightarrow [N \rightarrow \infty ]{(d)} \Gamma \big ( \tfrac{h(h-1)}{2},1\big ) , \end{aligned}$$
π
log
N
∑
1
≤
i
<
j
≤
h
L
N
(
i
,
j
)
→
N
→
∞
(
d
)
Γ
(
h
(
h
-
1
)
2
,
1
)
,
where $${{\textsf{L}}}^{(i,j)}_N$$
L
N
(
i
,
j
)
denotes the collision local time by time N between copies i, j and $$\Gamma $$
Γ
denotes the Gamma distribution. This generalises a classical result of Erdös and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960).
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference35 articles.
1. Bailey, E.C., Keating, J.P.: Maxima of log-correlated fields: some recent developments. J. Phys. A Math. Theor. 55(5), 053001 (2022)
2. Berestycki, N., Powell, E.: Gaussian free field, Liouville quantum gravity and Gaussian multiplicative chaos. https://homepage.univie.ac.at/nathanael.berestycki/Articles/master.pdf (2021)
3. Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. Ann l’IHP Prob. Stat. 46(2), 414–441 (2010)
4. Biskup, M.: Extrema of the two-dimensional discrete Gaussian free field. In: PIMS-CRM Summer School in Probability. Springer, Cham, pp. 163–407 (2017)
5. Caravenna, F., Sun, R., Zygouras, N.: Universality in marginally relevant disordered systems. Ann. Appl. Prob. 27, 3050–3112 (2017)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献