Abstract
AbstractBrascamp–Lieb inequalities are entropy inequalities which have a dual formulation as generalized Young inequalities. In this work, we introduce a fully quantum version of this duality, relating quantum relative entropy inequalities to matrix exponential inequalities of Young type. We demonstrate this novel duality by means of examples from quantum information theory—including entropic uncertainty relations, strong data-processing inequalities, super-additivity inequalities, and many more. As an application we find novel uncertainty relations for Gaussian quantum operations that can be interpreted as quantum duals of the well-known family of ‘geometric’ Brascamp–Lieb inequalities.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献