Motion Groupoids and Mapping Class Groupoids
-
Published:2023-08-04
Issue:2
Volume:402
Page:1621-1705
-
ISSN:0010-3616
-
Container-title:Communications in Mathematical Physics
-
language:en
-
Short-container-title:Commun. Math. Phys.
Author:
Torzewska FionaORCID, Faria Martins JoãoORCID, Martin Paul Purdon
Abstract
AbstractHere $${\underline{M}}$$
M
̲
denotes a pair (M, A) of a manifold and a subset (e.g. $$A=\partial M$$
A
=
∂
M
or $$A=\varnothing $$
A
=
∅
). We construct for each $${\underline{M}}$$
M
̲
its motion groupoid$$\textrm{Mot}_{{\underline{M}}}$$
Mot
M
̲
, whose object set is the power set $$ {{\mathcal {P}}}M$$
P
M
of M, and whose morphisms are certain equivalence classes of continuous flows of the ‘ambient space’ M, that fix A, acting on $${{\mathcal {P}}}M$$
P
M
. These groupoids generalise the classical definition of a motion group associated to a manifold M and a submanifold N, which can be recovered by considering the automorphisms in $$\textrm{Mot}_{{\underline{M}}}$$
Mot
M
̲
of $$N\in {{\mathcal {P}}}M$$
N
∈
P
M
. We also construct the mapping class groupoid$$\textrm{MCG}_{{\underline{M}}}$$
MCG
M
̲
associated to a pair $${\underline{M}}$$
M
̲
with the same object class, whose morphisms are now equivalence classes of homeomorphisms of M, that fix A. We recover the classical definition of the mapping class group of a pair by taking automorphisms at the appropriate object. For each pair $${\underline{M}}$$
M
̲
we explicitly construct a functor $${\textsf{F}}:\textrm{Mot}_{{\underline{M}}} \rightarrow \textrm{MCG}_{{\underline{M}}}$$
F
:
Mot
M
̲
→
MCG
M
̲
, which is the identity on objects, and prove that this is full and faithful, and hence an isomorphism, if $$\pi _0$$
π
0
and $$\pi _1$$
π
1
of the appropriate space of self-homeomorphisms of M are trivial. In particular, we have an isomorphism in the physically important case $${\underline{M}}=([0,1]^n, \partial [0,1]^n)$$
M
̲
=
(
[
0
,
1
]
n
,
∂
[
0
,
1
]
n
)
, for any $$n\in {\mathbb {N}}$$
n
∈
N
. We show that the congruence relation used in the construction $$\textrm{Mot}_{{\underline{M}}}$$
Mot
M
̲
can be formulated entirely in terms of a level preserving isotopy relation on the trajectories of objects under flows—worldlines (e.g. monotonic ‘tangles’). We examine several explicit examples of $$\textrm{Mot}_{{\underline{M}}}$$
Mot
M
̲
and $$\textrm{MCG}_{{\underline{M}}}$$
MCG
M
̲
demonstrating the utility of the constructions.
Funder
Leverhulme Trust Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference61 articles.
1. Aceto, P., Bregman, C., Davis, C.W., Park, J., Ray, A.: Isotopy and equivalence of knots in 3-manifolds (2020). arXiv:2007.05796 2. Ananthakrishna, G., Conway, A., Ergen, E., Floris, R., Galvin, D., Hobohm, C., Kirby, R., Kister, J., Kosanović, D., Christian, K., Lippert, F., Merz, A., Mezher, F., Niu, W., Nonino, I., Powell, M., Ray, A., Ruppik, B.M., Santoro, D., von Wunsch, M.: Topological manifolds. https://maths.dur.ac.uk/users/mark.a.powell/Topological-manifolds-lecture-notes-after-seminar.pdf 3. Alexander, J.W.: On the deformation of an n cell. Proc. Natl. Acad. Sci. USA 9(12), 406 (1923) 4. Arens, R.: Topologies for homeomorphism groups. Am. J. Math. 68(4), 593–610 (1946) 5. Artin, E.: Theorie der zöpfe. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 4, pp. 47–72. Springer (1925)
|
|