Motion Groupoids and Mapping Class Groupoids

Author:

Torzewska FionaORCID,Faria Martins JoãoORCID,Martin Paul Purdon

Abstract

AbstractHere $${\underline{M}}$$ M ̲ denotes a pair (MA) of a manifold and a subset (e.g. $$A=\partial M$$ A = M or $$A=\varnothing $$ A = ). We construct for each $${\underline{M}}$$ M ̲ its motion groupoid$$\textrm{Mot}_{{\underline{M}}}$$ Mot M ̲ , whose object set is the power set $$ {{\mathcal {P}}}M$$ P M of M, and whose morphisms are certain equivalence classes of continuous flows of the ‘ambient space’ M, that fix A, acting on $${{\mathcal {P}}}M$$ P M . These groupoids generalise the classical definition of a motion group associated to a manifold M and a submanifold N, which can be recovered by considering the automorphisms in $$\textrm{Mot}_{{\underline{M}}}$$ Mot M ̲ of $$N\in {{\mathcal {P}}}M$$ N P M . We also construct the mapping class groupoid$$\textrm{MCG}_{{\underline{M}}}$$ MCG M ̲ associated to a pair $${\underline{M}}$$ M ̲ with the same object class, whose morphisms are now equivalence classes of homeomorphisms of M, that fix A. We recover the classical definition of the mapping class group of a pair by taking automorphisms at the appropriate object. For each pair $${\underline{M}}$$ M ̲ we explicitly construct a functor $${\textsf{F}}:\textrm{Mot}_{{\underline{M}}} \rightarrow \textrm{MCG}_{{\underline{M}}}$$ F : Mot M ̲ MCG M ̲ , which is the identity on objects, and prove that this is full and faithful, and hence an isomorphism, if $$\pi _0$$ π 0 and $$\pi _1$$ π 1 of the appropriate space of self-homeomorphisms of M are trivial. In particular, we have an isomorphism in the physically important case $${\underline{M}}=([0,1]^n, \partial [0,1]^n)$$ M ̲ = ( [ 0 , 1 ] n , [ 0 , 1 ] n ) , for any $$n\in {\mathbb {N}}$$ n N . We show that the congruence relation used in the construction $$\textrm{Mot}_{{\underline{M}}}$$ Mot M ̲ can be formulated entirely in terms of a level preserving isotopy relation on the trajectories of objects under flows—worldlines (e.g. monotonic ‘tangles’). We examine several explicit examples of $$\textrm{Mot}_{{\underline{M}}}$$ Mot M ̲ and $$\textrm{MCG}_{{\underline{M}}}$$ MCG M ̲ demonstrating the utility of the constructions.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference61 articles.

1. Aceto, P., Bregman, C., Davis, C.W., Park, J., Ray, A.: Isotopy and equivalence of knots in 3-manifolds (2020). arXiv:2007.05796

2. Ananthakrishna, G., Conway, A., Ergen, E., Floris, R., Galvin, D., Hobohm, C., Kirby, R., Kister, J., Kosanović, D., Christian, K., Lippert, F., Merz, A., Mezher, F., Niu, W., Nonino, I., Powell, M., Ray, A., Ruppik, B.M., Santoro, D., von Wunsch, M.: Topological manifolds. https://maths.dur.ac.uk/users/mark.a.powell/Topological-manifolds-lecture-notes-after-seminar.pdf

3. Alexander, J.W.: On the deformation of an n cell. Proc. Natl. Acad. Sci. USA 9(12), 406 (1923)

4. Arens, R.: Topologies for homeomorphism groups. Am. J. Math. 68(4), 593–610 (1946)

5. Artin, E.: Theorie der zöpfe. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 4, pp. 47–72. Springer (1925)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3