Virtual Refinements of the Vafa–Witten Formula

Author:

Göttsche Lothar,Kool MartijnORCID

Abstract

AbstractWe conjecture a formula for the generating function of virtual $$\chi _y$$χy-genera of moduli spaces of rank 2 sheaves on arbitrary surfaces with holomorphic 2-form. Specializing the conjecture to minimal surfaces of general type and to virtual Euler characteristics, we recover (part of) a formula of C. Vafa and E. Witten. These virtual $$\chi _y$$χy-genera can be written in terms of descendent Donaldson invariants. Using T. Mochizuki’s formula, the latter can be expressed in terms of Seiberg–Witten invariants and certain explicit integrals over Hilbert schemes of points. These integrals are governed by seven universal functions, which are determined by their values on $${\mathbb {P}}^2$$P2 and $${\mathbb {P}}^1 \times {\mathbb {P}}^1$$P1×P1. Using localization we calculate these functions up to some order, which allows us to check our conjecture in many cases. In an appendix by H. Nakajima and the first named author, the virtual Euler characteristic specialization of our conjecture is extended to include $$\mu $$μ-classes, thereby interpolating between Vafa–Witten’s formula and Witten’s conjecture for Donaldson invariants.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SU(r) Vafa-Witten Invariants, Ramanujan’s Continued Fractions, and Cosmic Strings;Michigan Mathematical Journal;2024-01-01

2. AGT relations for sheaves on surfaces;Geometry & Topology;2023-11-09

3. Universal Structures in C-Linear Enumerative Invariant Theories;Symmetry, Integrability and Geometry: Methods and Applications;2022-09-23

4. Virtual Segre and Verlinde numbers of projective surfaces;Journal of the London Mathematical Society;2022-06-23

5. Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics;Geometry & Topology;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3