1. Albin, P., Rochon, F., Sher, D.: A Cheeger–Müller theorem for manifolds with wedge singularities. arXiv:1807.02178, to appear in Analysis & PDE
2. Albin, P., Rochon, F., Sher, D.: Resolvent, Heat Kernel, and Torsion Under Degeneration to Fibered Cusps. Memoirs of the American Mathematical Society, vol. 269. American Mathematical Society, Providence (2021)
3. Ammann, B., Lauter, R., Nistor, V.: On the geometry of Riemannian manifolds with a Lie structure at infinity. Int. J. Math. 2004, 161–193 (2004)
4. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (2004)
5. Brandhuber, A., Gomis, J., Gubser, S.S., Gukov, S.: Gauge theory and large $$N$$ and new $$G_2$$ holonomy metrics. Nucl. Phys. B 611, 179–204 (2001)