Abstract
AbstractWe demonstrate that random tensors transforming under rank-5 irreducible representations of $$\mathrm {O}(N)$$
O
(
N
)
can support melonic large N expansions. Our construction is based on models with sextic (5-simplex) interaction, which generalize previously studied rank-3 models with quartic (tetrahedral) interaction (Benedetti et al. in Commun Math Phys 371:55, 2019. arXiv:1712.00249; Carrozza in JHEP 06:039, 2018. arXiv:1803.02496). Beyond the irreducible character of the representations, our proof relies on recursive bounds derived from a detailed combinatorial analysis of the Feynman graphs. Our results provide further evidence that the melonic limit is a universal feature of irreducible tensor models in arbitrary rank.
Funder
Radboud Universiteit
H2020 European Research Council
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献