Abstract
AbstractHaving a distance measure between quantum states satisfying the right properties is of fundamental importance in all areas of quantum information. In this work, we present a systematic study of the geometric Rényi divergence (GRD), also known as the maximal Rényi divergence, from the point of view of quantum information theory. We show that this divergence, together with its extension to channels, has many appealing structural properties, which are not satisfied by other quantum Rényi divergences. For example we prove a chain rule inequality that immediately implies the “amortization collapse” for the geometric Rényi divergence, addressing an open question by Berta et al. [Letters in Mathematical Physics 110:2277–2336, 2020, Equation (55)] in the area of quantum channel discrimination. As applications, we explore various channel capacity problems and construct new channel information measures based on the geometric Rényi divergence, sharpening the previously best-known bounds based on the max-relative entropy while still keeping the new bounds single-letter and efficiently computable. A plethora of examples are investigated and the improvements are evident for almost all cases.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献