Differences Between Robin and Neumann Eigenvalues

Author:

Rudnick Zeév,Wigman IgorORCID,Yesha Nadav

Abstract

AbstractLet $$\Omega {\subset } {\mathbb {R}}^2$$ Ω R 2 be a bounded planar domain, with piecewise smooth boundary $$\partial \Omega $$ Ω . For $$\sigma >0$$ σ > 0 , we consider the Robin boundary value problem $$\begin{aligned} -\Delta f =\lambda f, \qquad \frac{\partial f}{\partial n} + \sigma f = 0 \text{ on } \partial \Omega \end{aligned}$$ - Δ f = λ f , f n + σ f = 0 on Ω where $$ \frac{\partial f}{\partial n} $$ f n is the derivative in the direction of the outward pointing normal to $$\partial \Omega $$ Ω . Let $$0<\lambda ^\sigma _0\le \lambda ^\sigma _1\le \ldots $$ 0 < λ 0 σ λ 1 σ be the corresponding eigenvalues. The purpose of this paper is to study the Robin–Neumann gaps $$\begin{aligned} d_n(\sigma ):=\lambda _n^\sigma -\lambda _n^0 . \end{aligned}$$ d n ( σ ) : = λ n σ - λ n 0 . For a wide class of planar domains we show that there is a limiting mean value, equal to $$2{\text {length}}(\partial \Omega )/{\text {area}}(\Omega )\cdot \sigma $$ 2 length ( Ω ) / area ( Ω ) · σ and in the smooth case, give an upper bound of $$d_n(\sigma )\le C(\Omega ) n^{1/3}\sigma $$ d n ( σ ) C ( Ω ) n 1 / 3 σ and a uniform lower bound. For ergodic billiards we show that along a density-one subsequence, the gaps converge to the mean value. We obtain further properties for rectangles, where we have a uniform upper bound, and for disks, where we improve the general upper bound.

Funder

European Research Council

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some spectral comparison results on infinite quantum graphs;Journal of Mathematical Physics;2024-07-01

2. Differences Between Robin and Neumann Eigenvalues on Metric Graphs;Annales Henri Poincaré;2023-12-19

3. Comparing the spectrum of Schrödinger operators on quantum graphs;Proceedings of the American Mathematical Society;2023-09-01

4. On the Robin spectrum for the equilateral triangle*;Journal of Physics A: Mathematical and Theoretical;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3