Truncated Affine Rozansky–Witten Models as Extended TQFTs

Author:

Brunner Ilka,Carqueville NilsORCID,Roggenkamp Daniel

Abstract

AbstractWe construct extended TQFTs associated to Rozansky–Witten models with target manifolds $$T^*\mathbb {C}^n$$ T C n . The starting point of the construction is the 3-category whose objects are such Rozansky–Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category $$\mathcal C$$ C of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in $$\mathcal C$$ C for every affine Rozansky–Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference37 articles.

1. Ayala, D., Francis, J.: The cobordism hypothesis. arXiv:1705.02240 [math.AT]

2. Banks, P.: Extended TQFTs and algebraic geometry. arXiv:2011.02394 [math.QA]

3. Baez, J., Dolan, J.: Higher dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995). https://doi.org/10.1063/1.531236. arXiv:q-alg/9503002

4. Bullimore, M., Ferrari, A., Kim, H.: Supersymmetric ground states of 3d $$\cal{N}=4$$ Gauge theories on a Riemann surface. arXiv:2105.08783 [hep-th]

5. Brunner, I., Klos, F., Roggenkamp, D.: Phase transitions in GLSMs and defects. JHEP 05, 006 (2021). https://doi.org/10.1007/JHEP05(2021)006. arXiv:2101.12315 [hep-th]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orbifolds of Topological Quantum Field Theories;Reference Module in Materials Science and Materials Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3