1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II. Comm. Pure Appl. Math. 12, 623–727 (1959); 17, 35–92 (1964)
2. Bourgain, J., Brezis, H.: On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16, 393–426 (2003); announced in C. R. Acad. Sci. Paris, Ser. I 334, 973–976 (2002)
3. Berestycki H., Bonnet A. and Chapman S.J. (1994). A semi-elliptic system arising in the theory of type-II superconductivity. Comm. Appl. Nonlinear Anal. 1(3): 1–21
4. Bonnet A., Chapman S.J. and Monneau R. (2000). Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as k→ + ∞. SIAM J. Math. Anal. 31: 1374–1395
5. Bolley, C., Helffer, B.: Rigorous results on Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field, I, II. Nonlinear Stud. 3, no. 1, pp. 1–29, no. 2, pp. 121–152 (1996)