Abstract
AbstractWe prove that cluster observables of level-sets of the Gaussian free field on the hypercubic lattice $${{\mathbb {Z}}}^d$$
Z
d
, $$d\ge 3$$
d
≥
3
, are analytic on the whole off-critical regime $${{\mathbb {R}}}\setminus \{h_*\}$$
R
\
{
h
∗
}
. This result concerns in particular the percolation density function $$\theta (h)$$
θ
(
h
)
and the (truncated) susceptibility $$\chi (h)$$
χ
(
h
)
. As an important step towards the proof, we show the exponential decay in probability for the capacity of a finite cluster for all $$h\ne h_*$$
h
≠
h
∗
, which we believe to be a result of independent interest. We also discuss the case of general transient graphs.
Funder
Swiss Federal Institute of Technology Zurich
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference27 articles.
1. Abächerli, A., Sznitman, A.-S.: Level-set percolation for the Gaussian free field on a transient tree. Ann. Inst. Henri Poincaré Probab. Stat. 54(1), 173–201 (2018)
2. Aizenman, M., Barsky, D.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)
3. Bricmont, J., Lebowitz, J.L., Maes, C.: Percolation in strongly correlated systems: the massless Gaussian field. J. Stat. Phys. 48(5–6), 1249–1268 (1987)
4. Duminil-Copin, H., Goswami, S., Raoufi, A., Severo, F., Yadin, A.: Existence of phase transition for percolation using the Gaussian free field. Duke Math. J. 169(18), 3539–3563 (2020)
5. Duminil-Copin, H., Goswami, S.t, Rodriguez, P.-F., Severo, F.: Equality of critical parameters for percolation of Gaussian free field level-sets, Preprint arXiv:2002.07735 (2020)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献