Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference10 articles.
1. Anguelova, I., Bergvelt, M.: $$H_D$$-quantum vertex algebras and bicharacters. Commun. Contemp. Math. 11(6), 937–991 (2009)
2. Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: An operadic approach to vertex algebra and poisson vertex algebra cohomology. Japan. J. Math. 14(2), 249–342 (2019). https://doi.org/10.1007/s11537-019-1825-3
3. Beilinson, A., Drinfeld, V.: Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence, RI (2004). https://doi.org/10.1090/coll/051
4. Borcherds, R.E.: Quantum vertex algebras. In: Taniguchi Conference on Mathematics Nara ’98, Adv. Stud. Pure Math., vol. 31, pp. 51–74. Math. Soc. Japan, Tokyo (2001)
5. Francis, J., Gaitsgory, D.: Chiral Koszul duality. Selecta Math. (N.S.) 18(1), 27–87 (2012). https://doi.org/10.1007/s00029-011-0065-z