Abstract
Abstract
We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by $$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$Wβ(x)=N-1+2βW(Nβx), for any $$\beta >0$$β>0, or to be given by $$V_N(x)=e^{2N} V(e^N x)$$VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported $$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential $$V_N$$VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
Funder
European Research Council
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献