1. Aspinwall, P.S.: $$K3$$ surfaces and string duality. In: Efthimiou, C., Greene, B. (eds.) Fields, Strings and Duality, pp. 421–540. World Scientific Publishing, Boulder (1997)
2. Aspinwall, P.S.: $$K3$$ surfaces and string duality. In: Yau, S.T. (ed.) Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, pp. 1–95. International Press, Vienna (1999)
3. Barth, W.: Even sets of eight rational curves on a surface. In: Bauer, I., Catanese, F., Kawamata, Y., Peternell, T., Siu, Y.T. (eds.) Complex Geometry. Collection of papers dedicated to Hans Grauert. Selected papers from the International Conference on Analytic and Algebraic Methods in Complex Geometry held in Göttingen, April 3–8, 2000. Springer, Berlin, pp. xxii+340 (2002) (ISBN: 3-540-43259-0 )
4. Bedroya, A., Hamada, Y., Montero, M., Vafa,C.: Compactness of brane moduli and the string lamppost principle in $$d {>}{6}$$. arXiv:2110.10157
5. Bershadsky, M., Pantev, T., Sadov, V.: F-theory with quantized fluxes. Adv. Theor. Math. Phys. 3(3), 727–773 (1999)